Tex ExampleTex Example
\begin{aligned}
\dot{x} & = \sigma(y-x) \\
\dot{y} & = \rho x - y - xz \\
\dot{z} & = -\beta z + xy
\end{aligned}
\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
<div data-format="maths">
\[\begin{aligned}
\dot{x} & = \sigma(y-x) \\
\dot{y} & = \rho x - y - xz \\
\dot{z} & = -\beta z + xy
\end{aligned} \]
</div>
<div data-format="maths">
\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
</div>
MathMLMathML
<div data-format="maths">
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<mi>x</mi><mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo><mi>b</mi><mo>±</mo>
<msqrt>
<mrow><msup><mi>b</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mi>a</mi><mi>c</mi></mrow>
</msqrt>
</mrow>
<mrow><mn>2</mn><mi>a</mi></mrow>
</mfrac>
</mrow>
</math>
</div>
AsciiMathAsciiMath
When a != 0, there are two solutions to ax^2 + bx + c = 0 and they are
x = (-b +- sqrt(b^2-4ac))/(2a) .
<div data-format="maths">
<p>When `a != 0`, there are two solutions to `ax^2 + bx + c = 0` and they are</p>
<p style="text-align:center">`x = (-b +- sqrt(b^2-4ac))/(2a) .`</p>
</div>